Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pain ; 19: 17448069231204191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37710969

RESUMO

Benzydamine is an active pharmaceutical compound used in the oral care pharmaceutical preparation as NSAID. Beside from its anti-inflammatory action, benzydamine local application effectively reliefs pain showing analgesic and anaesthetic properties. Benzydamine mechanism of action has been characterized on inflammatory cell types and mediators highlighting its capacity to inhibit pro-inflammatory mediators' synthesis and release. On the other hand, the role of benzydamine as neuronal excitability modulator has not yet fully explored. Thus, we studied benzydamine's effect over primary cultured DRG nociceptors excitability and after acute and chronic inflammatory sensitization, as a model to evaluate relative nociceptive response. Benzydamine demonstrated to effectively inhibit neuronal basal excitability reducing its firing frequency and increasing rheobase and afterhyperpolarization amplitude. Its effect was time and dose-dependent. At higher doses, benzydamine induced changes in action potential wavelength, decreasing its height and slightly increasing its duration. Moreover, the compound reduced neuronal acute and chronic inflammatory sensitization. It inhibited neuronal excitability mediated either by an inflammatory cocktail, acidic pH or high external KCl. Notably, higher potency was evidenced under inflammatory sensitized conditions. This effect could be explained either by modulation of inflammatory and/or neuronal sensitizing signalling cascades or by direct modulation of proalgesic and action potential firing initiating ion channels. Apparently, the compound inhibited Nav1.8 channel but had no effect over Kv7.2, Kv7.3, TRPV1 and TRPA1. In conclusion, the obtained results strengthen the analgesic and anti-inflammatory effect of benzydamine, highlighting its mode of action on local pain and inflammatory signalling.


Assuntos
Benzidamina , Humanos , Benzidamina/metabolismo , Benzidamina/farmacologia , Benzidamina/uso terapêutico , Dor/tratamento farmacológico , Dor/metabolismo , Nociceptores/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos/metabolismo
2.
J Clin Med ; 12(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37176629

RESUMO

BACKGROUND: In chronic wounds, high concentrations of matrix metalloproteinases (MMPs) can cause excessive proteolysis and slow wound healing. Consequently, restoring a proper MMP balance can help reduce the risk of a chronic wound. An antiseptic solution containing 0.05% sodium hypochlorite (Amukine Med 0.05%, Angelini S.p.A.; hereafter termed NaClO solution) is available on the market. The NaClO solution was proven effective and safe in managing infected skin wounds. To further characterize its activity, this study evaluated the in vitro activity of the NaClO solution on the monocyte release of MMPs. METHODS: Human monocytic THP-1 (ATCC® TIB-202™) cell lines were differentiated into macrophages and treated with different concentrations of NaClO (from 0.05% to 5 × 10-7%). In addition, the THP-1 cell line was stimulated with wound fluid (WF) from patients with active venous leg ulcers in the inflammatory phase. The effect of NaClO (0.025-0.0062%) was also evaluated on healthy human peripheral blood serum samples. The effects of treatments on the gelatinolytic activity of MMP-9 were evaluated by gelatin zymography. The effects on MMPs release were evaluated through the Pro™ Human MMP 9-plex Assay. An exploratory scratch wound healing assay was also performed. RESULTS: The NaClO solution reduced the gelatinolytic activity of MMP-9 and its activated form. The downregulation of MMP-9 gelatinolytic activity was also observed in peripheral blood serum. The MMPs profile showed a reduction in MMP-1 release (p < 0.05) and a slight reduction of the release of MMP-9 and MMP-12 after the treatment with LPS and the NaClO solution. A slight improvement in wound healing was observed after macrophage activation and treatment with the NaClO solution. CONCLUSIONS: The results obtained suggest a possible ability of the NaClO solution to modulate the proteolytic pathways in the wound microenvironment, further characterizing its activity and use in clinical practice during wound care.

3.
Exp Dermatol ; 32(7): 999-1006, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37009806

RESUMO

Thermoregulation and heat dissipation by sweat production and evaporation are vital for human survival. However, hyperhidrosis or excessive perspiration might affect people's quality of life by causing discomfort and stress. The prolonged use of classical antiperspirants, anticholinergic medications or botulinum toxin injections for persistent hyperhidrosis might produce diverse side effects that limit their clinical use. Inspired by botox molecular mode of action, we used an in silico molecular modelling approach to design novel peptides to target neuronal acetylcholine exocytosis by interfering with the Snapin-SNARE complex formation. Our exhaustive design rendered the selection of 11 peptides that decreased calcium-dependent vesicle exocytosis in rat DRG neurons, reducing αCGRP release and TRPV1 inflammatory sensitization. The most potent peptides were palmitoylated peptides SPSR38-4.1 and SPSR98-9.1 that significantly suppressed acetylcholine release in vitro in human LAN-2 neuroblastoma cells. Noteworthy, local acute and chronic administration of SPSR38-4.1 peptide significantly decreased, in a dose-dependent manner, pilocarpine-induced sweating in an in vivo mouse model. Taken together, our in silico approach lead to the identification of active peptides able to attenuate excessive sweating by modulating neuronal acetylcholine exocytosis, and identified peptide SPSR38-4.1 as a promising new antihyperhidrosis candidate for clinical development.


Assuntos
Antiperspirantes , Hiperidrose , Humanos , Ratos , Camundongos , Animais , Antiperspirantes/farmacologia , Qualidade de Vida , Acetilcolina/farmacologia , Acetilcolina/uso terapêutico , Hiperidrose/tratamento farmacológico , Hiperidrose/etiologia , Peptídeos/química , Exocitose/fisiologia , Neurônios/fisiologia
4.
Eur J Neurosci ; 56(5): 4514-4528, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35902984

RESUMO

Brain ageing has been related to a decrease in cellular metabolism, to an accumulation of misfolded proteins and to an alteration of the lipid membrane composition. These alterations act as contributive aspects of age-related memory decline by reducing membrane excitability and neurotransmitter release. In this sense, precursors of phospholipids (PLs) can restore the physiological composition of cellular membranes and ameliorate the cellular defects associated with brain ageing. In particular, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) have been shown to restore mitochondrial function, reduce the accumulation of amyloid beta (Aß) and, at the same time, provide the amount of acetylcholine needed to reduce memory deficit. Among PL precursors, alpha-glycerylphosphorylethanolamine (GPE) has shown to protect astrocytes from Aß injuries and to slow-down ageing of human neural stem cells. GPE has been evaluated in aged human hippocampal neurons, which are implicated in learning and memory, and constitute a good in vitro model to investigate the beneficial properties of GPE. In order to mimic cellular ageing, the cells have been maintained 21 days in vitro and challenged with GPE. Results of the present paper showed GPE ability to increase PE and PC content, glucose uptake and the activity of the chain respiratory complex I and of the GSK-3ß pathway. Moreover, the nootropic compound showed an increase in the transcriptional/protein levels of neurotrophic and well-being related genes. Finally, GPE counteracted the accumulation of ageing-related misfolded proteins (a-synuclein and tau). Overall, our data underline promising effects of GPE in counteracting cellular alterations related to brain ageing and cognitive decline.


Assuntos
Peptídeos beta-Amiloides , Fosfatidiletanolaminas , Idoso , Peptídeos beta-Amiloides/metabolismo , Etanolaminas/metabolismo , Etanolaminas/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Humanos , Neurônios/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/farmacologia
5.
Clin Oral Investig ; 26(4): 3613-3625, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35066687

RESUMO

OBJECTIVES: To assess the effects of benzydamine and mouthwashes (MoWs) containing benzydamine on different stages of Candida albicans biofilm: adhesion, formation, persistence, and regrowth (if perturbed). MATERIALS AND METHODS: C. albicans CA1398, carrying the bioluminescence ACT1p-gLUC59 fusion product, was employed. Fungal cells were exposed for 1', 5', or 15' to 4 different benzydamine concentrations (0.075 to 0.6%) to 2 mouthwashes (MoWs) containing benzydamine and to a placebo MoW (without benzydamine). Treated cells were tested for adhesion (90 min) and biofilm formation (24-h assay). Next, 24- and 48-h-old biofilms were exposed to benzydamine and MoWs to assess regrowth and persistence, respectively. The effects of benzydamine, MoWs containing benzydamine, and placebo on different biofilm stages were quantified by bioluminescence assay and by the production of quorum sensing (QS) molecules. RESULTS: Benzydamine and MoWs containing benzydamine impaired C. albicans ability to adhere and form biofilm, counteracted C. albicans persistence and regrowth, and impaired a 48-h-old biofilm. Some of these effects paralleled with alterations in QS molecule secretion. CONCLUSIONS: Our results show for the first time that benzydamine and MoWs containing benzydamine impair C. albicans capacity to form biofilm and counteract biofilm persistence and regrowth. CLINICAL RELEVANCE: Benzydamine and MoWs containing benzydamine capacity to affect C. albicans biofilm provides an interesting tool to prevent and treat oral candidiasis. Likely, restraining C. albicans colonization through daily oral hygiene may counteract colonization and persistence by other critical oral pathogens, such as Streptococcus mutans, whose increased virulence has been linked to the presence of C. albicans biofilm.


Assuntos
Benzidamina , Candida albicans , Benzidamina/farmacologia , Biofilmes , Antissépticos Bucais/farmacologia , Streptococcus mutans
6.
Future Microbiol ; 16(11): 797-800, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34165328

RESUMO

Aim: Ethanol is highly effective at inactivating enveloped viruses, including SARS-CoV-2. The aim of this study is to evaluate the virucidal activity of Amuchina Gel Xgerm (74% ethanol) against SARS-CoV-2, according to the European Standard EN14476:2013+A2:2019. Materials & methods: Virucidal activity of the study product was evaluated against SARS-CoV-2 strain USAWA1/2020 in suspension, in the presence of 0.3 g/l of bovine serum albumin. Results: The log10 reduction of SARS-CoV-2 in the presence of bovine serum albumin was ≥4.11 ± 0.12 after 30 s of exposure to the study product (80% dilution). Cytotoxicity was observed in the 100 dilution, affecting the detection limit by 1 log10. Conclusion: Virucidal activity against SARS-CoV-2 supports the effectiveness of this alcohol-based formulation as a prevention measure for COVID-19 illness.


Lay abstract The virus responsible of COVID-19 pandemic, SARS-CoV-2, can be inactivated by ethanol. This study evaluates the ability of an alcohol-based hand sanitizer (Amuchina Gel Xgerm, 74% ethanol) to kill SARS-CoV-2, according to the European Standard guidelines. Amuchina Gel Xgerm completely inactivates the virus after 30 s of exposure. This result supports the effectiveness of this alcohol-based formulation as a prevention measure for COVID-19.


Assuntos
COVID-19/prevenção & controle , Etanol/farmacologia , Higienizadores de Mão/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , COVID-19/virologia , Higiene das Mãos/métodos , Humanos
7.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023864

RESUMO

Brain aging involves changes in the lipid membrane composition that lead to a decrease in membrane excitability and neurotransmitter release. These membrane modifications have been identified as contributing factors in age-related memory decline. In this sense, precursors of phospholipids (PLs) can restore the physiological composition of cellular membranes and produce valuable therapeutic effects in brain aging. Among promising drugs, alpha-glycerylphosphorylethanolamine (GPE) has demonstrated protective effects in amyloid-injured astrocytes and in an aging model of human neural stem cells. However, the compound properties on mature neuronal cells remain unexplored. Herein, GPE was tested in human hippocampal neurons, which are involved in learning and memory, and characterized by a functional cholinergic transmission, thus representing a valuable cellular model to explore the beneficial properties of GPE. GPE induced the release of the main membrane phospholipids and of the acetylcholine neurotransmitter. Moreover, the compound reduced lipid peroxidation and enhanced membrane fluidity of human brain cells. GPE counteracted the DNA damage and viability decrease observed in in vitro aged neurons. Among GPE treatment effects, the autophagy was found positively upregulated. Overall, these results confirm the beneficial effects of GPE treatment and suggest the compound as a promising drug to preserve hippocampal neurons and virtually memory performances.


Assuntos
Hipocampo/citologia , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Fosfatidiletanolaminas/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Modelos Biológicos , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo
8.
Drug Dev Ind Pharm ; 41(5): 728-36, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24650036

RESUMO

New topical totally aqueous formulations that improve the low water solubility of minoxidil and realize an adequate permeability of drug in the skin are proposed. These formulations are lacking in propylene glycol and alcohol that are the principal irritant ingredients present in minoxidil commercial solutions. In order to enhance poor water solubility of minoxidil randomly methyl-ß-cyclodextrin was used, and four hydrogels such as, calcium alginate, sodium alginate, carbopol 934 and hydroxyethylcellulose were utilized to ensure a prolonged time of contact with the scalp. The inclusion complex minoxidil/methyl-ß-cyclodextrin with a molar ratio 1:1 was obtained by freeze drying and evaluated by NMR, FT-IR and DSC analysis. An apparent stability constant of formed inclusion complex was calculated by phase solubility diagram and its value was 400 M(-1). The solid inclusion complex was used to prepare gel formulations with similar dose to minoxidil commercial solution. The gels were evaluated for various technological parameters including rheological behavior, in vitro drug release and ex vivo permeation through pig skin. The best performance was observed for the calcium alginate formulation.


Assuntos
Minoxidil/administração & dosagem , Absorção Cutânea , Vasodilatadores/administração & dosagem , beta-Ciclodextrinas/química , Alopecia/tratamento farmacológico , Animais , Varredura Diferencial de Calorimetria , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Excipientes/química , Géis , Hidrogéis , Espectroscopia de Ressonância Magnética , Minoxidil/química , Minoxidil/farmacocinética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Suínos , Vasodilatadores/química , Vasodilatadores/farmacocinética
9.
Eur J Med Chem ; 41(2): 233-40, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16387393

RESUMO

In this work we evaluated the ability of 2,6-di-O-methyl-beta-cyclodextrin (DM-beta-Cyd) to include the anti-rhinovirus drug Disoxaril (WIN 51711), increasing its water solubility and stability. The complex, prepared by kneading method, was characterized in the solid state by differential scanning calorimetry and in aqueous solution using circular dichroism and NMR spectroscopy. The formation of 1:1 and 1:2 drug-Cyd complexes was hypothesized. Stability constants for both complexes were determined on the basis of an Ap-type phase solubility diagrams and evidenced a very high stability for the 1:1 complex. Thermodynamic parameters of the binding process showed the existence of classical hydrophobic interactions in the 1:1 complex with the formation of a less ordered system after complexation. An enthalpic contribution rather than an entropic one accompanied the association of the second Cyd molecule. DM-beta-Cyd was able to significantly increase water solubility of WIN 51711, from 0.000123 to 0.47142 mg/ml. Free drug shows a very low water stability, it is completely hydrolyzed after 36 h in PBS (pH 7.0), at 4 degrees C. In the presence of DM-beta-Cyd only a 10% of WIN 51711 was degraded, to the same conditions, after 12 days. DM-beta-Cyd increases the permeation of WIN 51711 across excised bovine nasal mucosa mounted on Franz cells, with respect to the free drug. Nevertheless, the permeation process had a lag time of 2 h so that the drug might assure its pharmacological activity on the outer surface of the mucosa. In vivo studies on rabbits evidenced that WIN 51711 is well tolerated, having no observable effect on the nasal mucosa following repeated administration.


Assuntos
Permeabilidade da Membrana Celular , Química Farmacêutica/métodos , Portadores de Fármacos/administração & dosagem , Isoxazóis/administração & dosagem , beta-Ciclodextrinas/administração & dosagem , Animais , Bovinos , Portadores de Fármacos/química , Estabilidade de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Isoxazóis/química , Cinética , Mucosa Nasal/patologia , Coelhos , Solubilidade , Análise Espectral , Termodinâmica , Água/química , beta-Ciclodextrinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...